Let $A(z)$ be the O.G.F of the sequence $S = \{a_0, a_1, a_2 \ldots \}$, then we can derive the O.G.F of the sequence $b_n = \sum_{i=0}^{n} a_i$ (i.e. $B = \{a_0, a_0+a_1, a_0+a_1+a_2 \ldots \}$) as follows.

Consider the sequence $S^1 = \{0 , a_0, a_1, a_2, a_3 \ldots \}$ then O.G.F corresponding to $S^1$ is $0\times z^0 + a_0 \times z + a_1 \times z^2 + a_2 \times z^3 \ldots = z\times A(z)$. Similarly the O.G.F corresponding to the sequence $S^2 = \{0, 0, a_0, a_1, a_3 \ldots \}$ is $z^2 \times A(z)$. Now notice that if we add corresponding terms in the sequences $S^1 , S^2, S^3 \ldots$ then this

results in the sequence $B$. Hence the generating function corresponding to $B$ is $A(z) + z\times A(z) + z^2\times A(z) + z^3\times A(z) \ldots = A(z)\times(1 + z + z^2 + z^3 \ldots) = \frac{A(z)}{1-z}$ $\Box$.

## No comments:

Post a Comment