templatestatic inline Unit gcd_integer_linear_combination(const Unit& a, const Unit& b, Unit& alpha, Unit& beta ){ Unit divd = a, divs = b, remd=0, quot; Unit a_divd[2] = {1,0}; //linear combination of the divident// Unit a_divs[2] = {0,1}, temp[2] = {0,0}; //linear combination of the divisor// bool b_flip = false; if(divd < divs){ divd = b; divs = a; b_flip = true; } //Invariant's: divd = a_divd[0]*a + a_divd[1]*b // // divs = a_divs[0]*a + a_divs[1]*b // while(divs){ remd = divd%divs; quot = (divd-remd)/divs; divd = divs; divs = remd; temp[0] = a_divs[0]; temp[1] = a_divs[1]; a_divs[0] = a_divd[0] - (quot * a_divs[0]); a_divs[1] = a_divd[1] - (quot * a_divs[1]); a_divd[0] = temp[0]; a_divd[1] = temp[1]; } if(!b_flip){ alpha = a_divd[0]; beta = a_divd[1]; }else{ alpha = a_divd[1]; beta = a_divd[0]; } return divd; }
The following are some examples $GCD(a,b) = (\alpha)*a + (\beta)*b$.
PASSED: 2 = (1613)*42 + (-8)*8468 PASSED: 1 = (-1684)*6335 + (1641)*6501 PASSED: 5 = (344)*9170 + (-551)*5725 PASSED: 1 = (-1949)*1479 + (308)*9359 PASSED: 1 = (967)*6963 + (-1508)*4465 PASSED: 2 = (858)*5706 + (-601)*8146 PASSED: 6 = (181)*3282 + (-87)*6828 PASSED: 2 = (121)*9962 + (-2450)*492 PASSED: 1 = (-596)*2996 + (919)*1943 PASSED: 1 = (-2348)*4828 + (2085)*5437 PASSED: 1 = (283)*2392 + (-147)*4605 PASSED: 1 = (-61)*3903 + (1546)*154 PASSED: 1 = (122)*293 + (-15)*2383 PASSED: 1 = (-1528)*7422 + (1301)*8717 PASSED: 1 = (615)*9719 + (-604)*9896 PASSED: 1 = (-304)*5448 + (959)*1727 PASSED: 1 = (-139)*4772 + (431)*1539 PASSED: 1 = (493)*1870 + (-93)*9913 PASSED: 4 = (628)*5668 + (-565)*6300 PASSED: 1 = (3461)*7036 + (-2461)*9895 PASSED: 4 = (-60)*8704 + (137)*3812 PASSED: 1 = (77)*1323 + (-305)*334 PASSED: 3 = (662)*7674 + (-1089)*4665 PASSED: 2 = (3)*5142 + (-2)*7712 PASSED: 1 = (1840)*8254 + (-2211)*6869 PASSED: 1 = (2027)*5548 + (-1471)*7645 PASSED: 1 = (929)*2663 + (-897)*2758 PASSED: 2 = (-301)*38 + (4)*2860 PASSED: 2 = (-823)*8724 + (737)*9742 PASSED: 1 = (-3)*7530 + (29)*779 PASSED: 1 = (-1499)*2317 + (1144)*3036 PASSED: 1 = (662)*2191 + (-787)*1843 PASSED: 1 = (10)*289 + (-27)*107 PASSED: 1 = (4289)*9041 + (-4336)*8943
No comments:
Post a Comment